
Mesoscopic modeling for nucleic acid chain dynamics

M. Sales-Pardo,1 R. Guimerà,1 A. A. Moreira,1 J. Widom,2 and L. A. N. Amaral1
1Department Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA

2Department of Biochemistry, Molecular Biology and Cell Biology, and Department of Chemistry, Northwestern University,
2153 Sheridan Road, Evanston, Illinois 60208, USA

sReceived 2 July 2004; revised manuscript received 8 November 2004; published 5 May 2005d

To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover
the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present
here a mesoscopic-level computational model that provides anew windowinto nucleic acid dynamics. We
model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer
comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can
rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We
use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin
motion. By performing a number of tests, we first show that our model is physically sound. We then focus on
a study of the kinetics of a DNA hairpin—a single-stranded molecule comprising two complementary segments
joined by a noncomplementary loop—studied experimentally. We find that results from our simulations agree
with experimental observations, demonstrating that our model is a suitable tool for the investigation of the
hybridization of single strands.
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I. INTRODUCTION

Some of the most challenging questions in
biochemistry—such as determining RNA secondary structure
starting from sequence alonef1,2g or identifying the dynamic
mechanism responsible for the slow folding of the molecule
into its catalytic structuref3,4g—concern the mesoscopic be-
havior of nucleic-acid chains. The understanding of the con-
figurational changes of nucleic acids is a key step if one
wishes to control cellular processes such as transcription or
translation. In addition, the configurational dynamics of
single-stranded nucleic acids is also relevant to microarray
experiments: The expression level assigned to a given gene
is related to the hybridization of a labeled nucleic-acid chain
sthe probed to another nucleic-acid chain tethered to a glass
slide sthe targetd f5–7g. In microarrays, each gene is repre-
sented in 10 to 20 spots. Significantly, the hybridization
yields for spots representing the same gene exhibit large
fluctuations, posing serious problems for the interpretation of
microarray resultsf8–10g. Understanding the hybridization
of target and probe will thus help us in designing more reli-
able microarrays and in interpreting microarray data.

Nucleic-acid hairpins are likely the least complex system
from which to assess mesoscopic properties of single strands.
They are also relevant to a number of biologically important
phenomena. For example, in RNA, the formation of hairpin
structures is believed to be the critical step before the fast
folding into the native configurationf11g, while, in DNA,
hairpin formation is relevant to a number of significant pro-
cesses such as recombination, transposition, and gene ex-
pressionf12–14g. For these reasons, hairpins are systems to
which experimentalists have devoted much attention
f15–20g. Importantly, experimental observations report that,
even for short hairpins, the configurational dynamics is com-
plex and strongly affected by sequence.

Here, we develop a mesoscopic-level model which we
show can describe the dynamics of single-stranded nucleic

acids. In order to validate our model, we study short DNA
hairpins—single-stranded nucleic acid chains comprising
two complementary “stems” joined by a noncomplementary
“loop.” We show that simulations of the model consistently
reproduce predicted melting temperatures. To validate the
dynamics, we focus our attention on a DNA hairpin which
was extensively studied experimentally by Ansari and co-
workersf16,18g and show that the relaxation rates measured
with our model agree with the relaxation rates measured ex-
perimentally.

This paper is organized as follows. In Sec. II, we review
the existing modeling approaches for DNA. In Sec. III, we
describe our model including the basic units, the types of
interactions, and the implementation of the dynamics. In Sec.
IV, we present the results of a number of tests used to vali-
date the model, including the comparison with experimental
observations for an extensively studied hairpin. Finally, in
Sec. V we present our conclusions.

II. PRIOR NUCLEIC ACID MODELING

Nucleic acids are linear polynucleotide chains. Each
nucleotide comprises a nitrogenous organic base attached to
a pentose—a five-carbon sugar—which is also attached to a
phosphoric acid. The pentose in DNA is a deoxyribose, while
in RNA the pentose is a ribose. The carbon atoms in the
pentose are labeled from 18, the carbon to which the base is
attached, to 58, to which the phosphate group is attached.
The bases fall onto two groups: Thepurines—adeninesAd
and guaninesGd—and thepyrimidines—thymine sTd, cy-
tosinesCd, and uracilsUd. The combination of a nucleic base
and a pentose is called a nucleoside. A nucleotide is formed
by attaching one, two, or tree phosphate groups to a nucleo-
side.

Ab initio modeling. For short time and length scales, re-
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searchers typically useab initio models, in which interac-
tions between atoms are calculated by integration of the
Schrödinger equationf21–23g. Since the electron orbitals are
explicitly considered, this approach is adequate to investigate
phenomena involving changes in electronic states such as
chemical reactivity and absorption of light.

A weakness ofab initio modeling is that it takes into
account neither the molecular structure nor solvent or tem-
perature effects. Thus, these methods only describe the zero-
temperature gas phase of nucleic acids. Nonetheless, the in-
formation obtained fromab initio calculations provides the
theoretical grounds for the parametrization of more coarse-
grained modelsf24g.

Force-field models. Due to the complexity ofab initio
calculations, the use of these models is restricted to single
nucleotides or oligonucleotide dimersf25g. To model nucleic
acids at larger scales, one can use force-field modelsf26,27g
in which the DNA molecule is treated as aclassical system
composed of atoms held together by bonds. In these models,
the energy of the system is a function only of the position of
the atoms.

Force-field models have successfully predicted both static
f28,29g and dynamicf30,31g structural properties of DNA.
However, a serious handicap of this treatment is that the
existence of a large number of long-range electrostatic pair-
wise interactions dramatically increases the duration of the
simulations. To overcome this problem, one can truncate the
potential, but this leads to the construction of an effective
potential that is not necessarily accurate. Nevertheless, a
chain with 12 base pairs can be simulated for typically
20 nanoseconds, which is the time scale associated with the
rotation of a nucleotidef32g.

Zipper models. The computational cost of force-field
models imposes the need to develop even coarser descrip-
tions in order to model longer time scales or longer chains.
To characterize DNA denaturation, a successful approach is
to consider a two-dimensional lattice model in which the two
strands are bonded by springs and bases oscillate about their
equilibrium positionf33g. As an alternative approach, Ising-
like models—which describe double-strandedsdsd DNA as
an ensemble of molecule configurations in which bases are
either open or closedf34–36g—are quite accurate in predict-
ing equilibrium properties such as the melting temperatures
of large chains. Recently, these models have been extended
by including elasticity terms in order to describe different
dynamic aspects observed in the so-called pulling and unzip-
ping experiments of single moleculesf19,37,38g. However,
most of these models do not consider sequence heterogene-
ity, and even when they do, they do not take into account the
sequence dependence of the single-strand contribution.

Bead models. A second class of mesoscopic models are
the so-called bead models, which are used to study the long-
time dynamics of DNA moleculesf39–42g. In these models,
each DNA single strand is a chain of beads. Each bead rep-
resents a rigid part of the nucleotidef43g or the center of
mass of bases and backbone groupsf40g. Bead models—
which successfully reproduce the melting dynamics observed
in experimentsf40g—typically consider only interactions
that affect double-helix stability, neglecting single-strand
properties.

Elastic chains. To investigate even larger molecules, one
has to introduce further simplifications. For instance, to in-
vestigate the supercoiling structure of dsDNA in chromo-
somes, researchers model dsDNA as an elastic chain whose
units interact electrostaticallyf44g. With these models, it is
possible to investigate the dynamics of very long chains con-
taining thousands of base pairs for time scales on the order of
milliseconds f45g—the time scale associated with site-
specific recombination processesf46g—as well as the
temperature- or torque-induced denaturation of long mol-
eculesf47g.

Mesoscopic models for single-stranded nucleic acids

Recently, several groups have developed models to inves-
tigate the statics and dynamics of single-stranded nucleic ac-
ids at mesoscalesf10,48–52g. Most of these models focus on
the investigation of a system of great current interest: hair-
pins, which are single-stranded nucleic acids with two
complementary sections linked by a noncomplementary loop
f15–18g. Hairpins appear in both DNA and RNA and partici-
pate in a number of biological processes such as recombina-
tion and gene expression mechanismsf46,53g. All-atom
models have also been used to study mesoscopic objects like
hairpins f54,55g. Specifically, Sorinet al. have investigated
the configurational dynamics of an RNA hairpin 14 bases
long. Using 40 000 processors, they could simulate the mol-
ecule for 500ms. This is clearly the largest scale that one can
pursue with such models, but, unfortunately, it still falls short
for the time scales involved in microarray experiments,
which are of the order of seconds or more.

The models proposed for the study of hairpins fall
roughly into two categories. In the first category, one finds
models whose purpose is to investigate the elastic properties
of the hairpin loopsf49,52g. In these models, the hairpin has
no stem. It is reduced to a homopolymer which represents
the loop and whose monomers in the loop can be either
stacked or unstacked. For example, in the model of Aalberts
et al. f49g, the polymer is divided into rigid segments com-
prised by an equal number of monomers to mimic different
stacking strengths, whereas, in the model of Sainet al. f52g,
the stacking interaction between neighboring monomers is
specifically taken into account. While these models are a
practical first approach to investigate ring formation of
single-stranded nucleic acids, their use is very limited, since
the dynamics of hairpins with long stems cannot be investi-
gated.

In the second category, one finds “configurational mod-
els.” These models are defined on a plane, thus they only
consider the secondary structure of the hairpinf10,48,50,51g.
Different configurations in these models differ in the se-
quence of base pairs bonded.

The model proposed by Chen and Dillf48g uses polymer
graph theory to compute the entropy associated to the differ-
ent configurations and uses a multiplicative factor to account
for the loss in entropy due to the missing third dimension.
The stacking free energies for the different configurations are
computed for each particular sequence using the Turner rules
f56g. However, single-stranded regions have no energy con-
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tribution. Recently, Zhang and Chenf10g studied the “con-
figurational” dynamics with these types of models by intro-
ducing transition rates. The only allowed transitions are
those that break or add a base pair to configurations compris-
ing at least two stacked base pairs.

Coccoet al. proposed a similar model to study the unzip-
ping dynamics of the pulling experiments on RNA hairpins.
In their model, free energies are also computed using the
Turner rules and an extra entropic term is assigned to the
single-stranded ends of the molecule. The dynamics is imple-
mented by assigning transition rates to the process of break-
ing or adding a single base pair at each time step.

All these models have a common feature: They rely on
the zipping/unzipping mechanisms to describe the folding
and unfolding of hairpins. This approach has been proven
useful to study some aspects of how the dynamics relate to
the free-energy landscape. However, since there is no
sequence-specific treatment of a single strand and since they
do not consider the diffusion of the molecule in space, they
are not suitable to investigate the hybridization of target and
probe under microarray conditions.

III. THE BEAD-PIN MODEL

The model we develop is closest in spirit to the “bead”
models sFig. 1d. We model single-stranded nucleic acid
chains as linear polymer chains in which each monomer

comprises a bead rigidly attached to a pin. The bead repre-
sents the sugar molecule, while the pin represents the nitrog-
enous base. We model phosphodiester bonds as rigid rods
that connect two consecutive sugar beads and form, with the
beads, the backbone of the chain.

The sugar beads sit on the nodes of a three-dimensional
triangular latticesFig. 2d. This lattice is commonly used in
simulations of polymers—see, for instance, Ref.f57g—
becausesid each node has a larger number of first neighbors
than cubic lattices, implying that a greater number of sym-
metries are preservedf58g, andsii d it is not possible for two
strands to cross—a situation that is almost unavoidable for
cubic lattices in which movements of the beads to next-
nearest-neighbor nodes are allowedf59g. Note that at each
time, we allow a single bead to sit on any lattice site.

A. Lattice configurations

To model the stiffness of the chain, we restrict the angle
between two consecutive bondsfFig. 2sbdg. The model gen-
erates sequence-dependent elastic propertiesf60g by means
of base-specific stacking interactionsf15,61g sFig. 3d. Be-
cause bonds that link two consecutive sugars in the strand
can rotate almost freelyf60g, we impose no restrictions on
the direction of the base pins.

An important factor concerning the implementation of the
model is that the characteristic time scale for the rotation of
the nucleosides about the chain axis is of the order of nano-
secondsf62–65g, at least two orders of magnitude faster than
the time scale associated with the motion of the monomers in
the polymer chain itself, which for molecules tens of bases

FIG. 1. sColor onlined Mesoscale representation of the basic
“units” comprising a nucleic acid chain: Phosphodiester bonds
sgreen circlesd, sugar moleculesslight blue pentagonsd, and nitrog-
enous basesslarge colored circlesd. The diagram to the right illus-
trates the different units in our model: Sugar moleculessblue
circlesd are bonded by phosphatessgreen straight linesd to form the
phosphate backbone of the nucleic acidsgreen boxd; colored pins
represent the nitrogenous bases. Here and in the following figures,
we use the following color coding: yellow stands for ThyminesTd,
purple stands for GuaninesGd, orange stands for AdeninesAd, and
dark blue stands for CytosinesCd.

FIG. 2. sColor onlined Lattice imposed constraints for the
nucleic acid chain configurations.sad We use a three-dimensional
triangular lattice. We constrain consecutive phosphodiester bonds to
have an angle larger than or equal to 60° in order to mimic the
stiffness of the sugar-phosphate backbone. The diagram illustrates
the conformations allowed for two consecutive bonds in a three-
dimensional triangular lattice. The black solid line and the black
circles represent the reference bond and beads, respectively, and the
purple dashed lines indicate the allowed conformations for the fol-
lowing bond. In the diagram, colored dots represent lattice sites
which are nearest neighbors of the central blue dot. Different colors
indicate the plane on which the site sits: topsredd, middle sblued,
and bottomsgreend. sbd The phosphodiester bond can be easily
torqued, hence a sugar-base complex can take any spatial orienta-
tion provided it does not overlap with the phosphodiester bond. The
diagram illustrates the ten possible orientations that a basespind can
takespurple ellipsesd for a given conformation of the polymer chain
indicated by the black circles and black solid lines.
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long is of the order of fractions of microseconds for ssDNA
f66g or microseconds for dsDNAf67g. The implication for
the dynamic rules implemented in the model is that after the
translational motion of a nucleotide, the nucleotide confor-
mation is immediately relaxed to the temperature-specific
equilibrium conformationf89g. It follows that the time reso-
lution of our model is finite, hence phenomena taking place
at time scales shorter than nanoseconds cannot be investi-
gated.

B. Interactions

The model allows for different types of pairwise interac-
tions including nucleotide-nucleotide and nucleotide-solvent.
These interactions are assumed to be short-ranged and thus
restricted to elements occupying neighboring sites in the lat-
tice. In the following, we only describe interactions between
pairs of bases. Solvability effects due to salt concentration
can be effectively introduced by changing the values of the
interactions.

We consider two types ofnucleotide-nucleotideinterac-
tions: complementarity interactions and stacking interac-
tions. Complementarity interactions lead to Watson-Crick
sWCd pair formation through hydrogen bonds. These inter-
actions occur when the pins of a pair of neighboring nucle-
otides point to one another. Thus, complementarity interac-
tions are not possible between consecutive bases in a strand,
although they are possible between bases belonging to the
same strand as long as the rigidity conditions described in
Fig. 2 are not violated. We show in Fig. 3sad the strength of
these interactions.

The stacking interaction arises from the fact two bases
“like” to “lie” on top of each other. In our model, two con-
secutive nucleotides are stacked when the pins are parallel to
each other and the relative angle between the pin orientation
and the phosphodiester bond connecting the two nucleosides
is greater than or equal to 60°. In general, this interaction is
stronger for purines than for pyrimidines because of their
larger sizef60,61g. However, the strength of the interaction
also depends on the sequence and, in the case of dsDNA, on
the existence or not of base pairs above and below the con-
sidered one. In such a case, opposite bases belonging to ad-
jacent bonded base pairs can be cross-stackedsFig. 3d.

The strength of the different interactions shown in Fig. 3
was obtained mostly from experimental data. As a first ap-
proximation, we consider the interaction to be symmetric,
i.e., there is no difference between 58 to 38 and 38 to 58
interactions.

We obtain the base-stacking interactions directly from the
enthalpies measured from the thermodynamic parameters for
single-strand stacking reported in Chap. 8 of Ref.f60g. For
convenience, we rescale them into the rangef24,0g for con-
venience. Note that the data are incomplete since there are no
experimental measurements for the stacking enthalpies for
PolysGd or the combinations AC, GC, AG, GT, and CT. To
assign the remaining stacking interactions, we use the fol-
lowing assumptions:sid Purines have stronger stacking inter-
actions;sii d G’s have stronger stacking interactions than A’s
and C’s have stronger stacking interactions than T’s or U’s.
The rationale forsid is purine’s larger size, while the ratio-
nale for sii d is the greater stability of duplexes comprising
G-C bonds.

We compute the hydrogen-bonding and cross-stacking in-
teractions from the duplex stacking enthalpies used in the
Turner rules. As a first approximation, we consider that
cross-stacking interactions only occur between purines. As
for the base-stacking interactions, we rescale all the interac-
tion values into the rangef24,0g.

C. Chain motion

A major challenge when modeling the kinetics of lattice
polymer chains is the implementation of thermal dynamics
that sid sample the whole phase space,sii d reproduce thermo-
dynamic equilibrium properties, andsiii d are realistic and
consistent with the kinetic features of the system being mod-
eled. The selection of realistic chain movements that pre-
serve ergodicity and do not introduce spurious symmetries
into the conformations of the polymer is, thus, of the greatest
importance.

In the past, there has been some discussion on whether the
use of Monte CarlosMCd dynamics is a valid tool to inves-
tigate polymer kinetics, since it was initially formulated to
investigate static equilibrium properties. There are, however,
plenty of examples in the polymer literature showing that by
choosing an appropriate set of rules of motion and the cor-
rect simulation time scale, the results obtained using MC
dynamics are as reliable as those obtained with molecular
dynamics f68g. In fact, there is evidence that simulations
using MC sampling reproduce the dynamics observed ex-
perimentallyf68,69g.

A number of algorithms using MC dynamics have been
proposed over time to investigate polymers. One of the most
popular is the Verdier-Stockmayer modelf70g, in which a
number of local moves can be performed depending on the
local conformation of the monomers, namely the so-called
“crankshaft,” “end-bond,” and “kink-jump” movements. MC
simulations using these dynamics have been shown to repro-
duce some real kinetic properties of homopolymers and pro-
teinsf59,69,70g. However, this algorithm has problems in the
sampling of phase spacef59g. Specifically, the relaxation of
kinks toward the center of the polymer chain is very slow

FIG. 3. sColor onlined Interaction energiessin arbitrary unitsd
between pairs of nucleotides. We use the color code shown on the
right to represent interaction strengths. We obtained the single-
strand stacking energies from experimental data reported in Ref.
f60g sChap. 8d, and the hydrogen bonding and cross-stacking ener-
gies from the duplex stacking enthalpies used in the Turner Rules
f60g sChap. 8d.
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and the polymer can get locked in some configurations.
With other chain ‘‘moves,” such as reptationsor “slither-

ing snake”d f71g and “pivot relaxation”f72g, the sampling of
phase space is much improved and the relaxation toward
equilibrium is much faster. However, the rules of motion
proposed in these algorithms are not “realistic” moves that
happen in real polymers under dilute conditionsf59g. Never-
theless, by constraining the reptation to a number of selected
internal monomers, a modified reptation algorithm can be
used to “propagate kinks” along the chain while keeping a
correct description of the kinetic propertiesf73,74g.

In our model, we use a generalized version of this “inter-
nal reptation” model which includes, but is not restricted to,

the propagation of kinks along the polymersTable Id. Our
dynamics includes all the local movements considered in the
Verdier-Stockmayer algorithm, as well as the propagation of
“local deformations” along the chainssee Fig. 4d. This gen-
eralized dynamics has the advantage that in order to generate
a new configuration, one does not have to study the local
configuration of the monomers to see which local movement
is possible as it happens in the Verdier-Stockmayer algo-
rithm. The only constraint for the new configuration is that
the stiffness conditions be fulfilled.

Because the time scales for the motion of the entire poly-
mer and for the rotation of the pins differ by a factor of a
1000, we use a modified MC scheme that considers sepa-

TABLE I. Algorithm for the motion of a single chain.

1 Randomly select a monomer,mi.

2 If mi is not bonded to its own chain:

2.1 List all the empty neighboring sites that fulfill the stiffness constrains with at least one of the sites occupied by the two
neighboring monomers in the chainmi−1 andmi+1.

2.2 Randomly select a new site from the list for the selected monomer to move to.

2.3 Select the direction of the chain that will reptate:

2.3.1 If the new position of the selected monomer is a neighbor of only the site occupied by the leftsrightd neighboring
monomer in the chain, the monomers toward the rightsleftd end of the chain reptate.

2.3.2 If the selected site is a neighbor of the sites occupied by bothmi−1 andmi+1, then:

2.3.2.1 If the new configuration satisfies stiffness constraints:

2.3.2.1.1 With probabilityp, only the selected monomer moves to the selected site. No other
monomers reptate.

2.3.2.1.2 With probability 1−p, select randomly one of the endssright or leftd, and allow the
monomers along the chain toward the selected end to reptate.

2.3.2.2 If the new configuration does not satisfy stiffness constraints with the leftsrightd neighboring monomer
in the chain, allow the monomers along the chain toward the leftsrightd end of the chain to reptate.

2.4 Move the selected monomer to the selected site and iterate the following steps for the monomers between the selected
monomer and the selected end.

2.4.1 For the following monomer, build a list of empty neighboring sites that satisfy stiffness conditions with the
previous monomers in the chain.

2.4.2 Select randomly a new site from the list for this monomer to move to.

2.4.3 If the selected site is a neighbor of the sites occupied by the two neighboring monomers in the chain and the new
configuration satisfies stiffness conditions, stop the reptation with probabilityp.

3 If mi is bonded to its own chain, propose a change of orientation. Accept or reject the change using theMETROPOLISalgorithm.

3.1 If the change is accepted, follow the procedure described in step 2.

3.2 If the change is rejected, the pair of bonded monomers move simultaneously in the same direction while the remaining
monomers remain in the previous position.

3.2.1 List the pair of neighboring sites of the pair of bonded monomers that are neighbors of the consecutive monomers
in the chain and satisfy stiffness conditions.

3.2.2 Select randomly a pair of sites among the list and perform the movement.

4 Verify that none of the pin orientations overlaps with the backbone.

4.1 If a pin orientation overlaps with the backbone, select randomly a new orientation for that pin.

5 Compute the energy of the new configuration.

6 Accept or reject the change in configuration using theMETROPOLISalgorithm.

7 For a number of times equal to the number of monomers in the chain, repeat the following steps:

7.1 Randomly select a monomermj.

7.2 Randomly select a new orientation for the pin ofmj that does not overlap with the backbone of the polymer.

7.3 Compute the new energy.

7.4 Accept or reject the change in orientation using theMETROPOLISalgorithm.
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rately the translational motion of the beads and the rotational
motion of the pins. Specifically, we “split” the motion of the
nucleotide chain into two steps:sid bead motion andsii d pin
motion. Table I describes in detail the algorithm by which we
implement the motion of beads and pins—note that the pins
thermalize regardless of whether the beads change their con-
figuration or not.

In the algorithm described in Table I, we consider single
strands whose bases can form WC pairs. If we consider two
single strands bonded to each other, an immediate extension
of the algorithm is to consider the simultaneous motion of
the two bonded chains.

IV. MODEL VALIDATION

In order to validate our model, we first perform basic tests
that ensure that our model displays a physically sound be-
havior. Next, we study static and kinetic properties of ssDNA
hairpins, which are self-complementary single strands linked
by a noncomplementary loopsFig. 5d. Hairpin conformations
are ubiquitous in nature. In RNA, they dominate the second-
ary structure and are responsible for the fast folding into the
native structuref11g, while in DNA they are involved in
important biological processes such as the regulation of gene
expressionf14,53g and DNA recombinationf12,75g and
transpositionf13,76g. Importantly, hairpins are not static
structures: In thermal equilibrium, they fluctuate between
open and closed statessFig. 5d, providing an ideal model
system for the investigation of single-strand properties.

A. Sampling of configuration space

First, we test if the motion algorithm implemented in our
model is ergodicf77g. To this end, we investigate the sam-
pling of configuration space for a polymer chain moving
according to the algorithm described earlier and for different
values ofp. We study two polymers comprising six and eight
monomers at infinite temperature. Our results indicate that
the sampling of configuration space becomes more uniform
asp→0 sFig. 6d. Importantly, our analysis also suggests that
for p as large as 0.1, the sampling of configuration space is
already essentially uniform. This is of practical relevance
because even forp of order 0.1, one already observes a sub-
stantial decrease in simulation times. This decrease arises
from the fact that in MC simulations, the energy difference
between configurations increases with an increasing number
of moving monomers. Larger energy differences make it less
likely for the move to be accepted, resulting in longer equili-
bration times.

B. Average radius of gyration

The radius of gyration Rg is the mean distance of all
monomers to the center of mass of the polymer,

Rg =
1

L
o
i=1

L

ÎsRW − rWid · sRW − rWid,

FIG. 4. sColor onlined Chain motion on the lattice. In the panels,
different colors indicate the different planes to which the sites be-
long: Blue for the central plane, red for the plane above, and green
for the plane below. We label the central site “0” and we number the
twelve neighboring sites from 1 to 12. Site “13” is an example of a
next nearest neighbor of the central site “0” that is a nearest neigh-
bor of sites “5” and “6.”sad Initial configuration of a polymer chain
comprising three monomerssm1,m2,m3d sitting on the nodes of a
three-dimensional lattice. To illustrate our algorithm for the motion
of the chain, we consider the motion of the monomerm2. sbd Pro-
jection onto the central plane of the polymer configuration and the
neighboring lattice sites. The color code is the same as insad.
Monomer m2 can move with equal probability to any of the ten
empty neighboring sites.scd m2 moves to site “7”sindicated by the
black arrowd. This site is a nearest neighbor of site “1” in whichm3

sits, but it is not a nearest neighbor of site “5” which is occupied by
m1. Since consecutive monomers in the polymer chain must occupy
neighboring sites in the lattice,m1 must “reptate,” i.e., it must move
to a neighboring site which is also a neighbor of site “7.” These are
sitesh“0,” “6,” “11,” “13” j indicated by boxes. Purple boxes show
sites which cannot be occupiedh“0,” “6” j, because the final con-
figuration would violate stiffness constraints. Black boxes indicate
acceptable sitesh“11,” “13” j. With equal probability, monomerm1

can move to either of the two acceptable sites. The two possible
final configurations are shown in panelssed and sdd.

FIG. 5. sColor onlined Single-strand DNA hairpins.sad Sample
configurations of a ssDNA hairpin, comprising 25 nucleotides with
sequence GCGTT-T15-AACGC, on a three-dimensional triangular
lattice. Spheres with different color indicate nucleotides with differ-
ent bases: Orange for adeninesAd, purple for guaninesGd, yellow
for thymine sTd, and blue for cytosinesCd. Note that the lattice
symmetries are almost unnoticeable.sbd Schematic illustration of
the transition between open and closed states for a hairpin loop. The
hairpin switches between open/coil and closed/native states with
characteristic rateskopeningandkclosing.
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RW =
1

L
o
i=1

L

rWi , s1d

whereL is the number of monomers in the chain.
According to polymer theoryf79g, the average radius of

gyration kRgl scales with the polymer lengthsi.e., the num-
ber of monomersd askRgl,Ln, with n.0. In our model, we
have included volume constraints since a lattice site cannot
be occupied by more than one monomer simultaneously, but
we also have stiffness constraints and therefore we should
expect to obtain an exponent value somewhat larger than the
value for a self-avoiding random walkn=0.6. Figure 7sad
shows that our simulations agree with theoretical expecta-
tions, since the average radius of gyration for different poly-
mer lengths scales askRgl,Ln, with n=0.75±0.07.

C. Diffusion

A polymer comprisingL monomers diffuses with a diffu-
sion constant that scales with the length of the chainD
,L−a f78g. In order to test this prediction, we measure the
mean-squared displacement X2std of the center of mass of
the chain as a function of time,

X2std ; kfRW std − RW s0dg2l, s2d

where k¯l indicates the averages over different dynamical
histories of the chain,hrWij is the set of positions of the mono-
mers, and each time step corresponds to a single chain move-
ment. In the diffusive regime, X2 scales linearly with time:
X2,Dt.

We study the mean-squared displacement versus time for
polymers of lengthsL=48 toL=197. We find that the linear
regime is reached after approximately 100 time steps. This
linear growth is apparent in Fig. 7sbd. By scaling all the
curves for the different polymer lengths, we find that the
diffusion coefficient scales asD,L−a, with a=0.80±0.13.

D. Nucleotide movements: Thermal dynamics

To test whether at finite temperatures our model samples
the different configurations with Boltzmann statistics, we
study the simplest hairpin structure possible: A-TTTT-T. This
hairpin, which comprises a one base-pair stem and a four-
base T-loop, is the simplest because T has the weakest inter-
actions of all nucleic bases.

The question of the uniform sampling of all possible con-
figurations for very large temperatures was already addressed
in Sec. IV A. We now calculate the equilibrium energy of the
hairpin as a function of temperaturefFig. 8sadg. To simplify
the calculations, we set the stacking interactions of the T’s to
zero. Under these conditions, there are two possible interac-
tions with nonzero energy: the formation of the A-T WC pair
in the stemsenergye=−1d and the stacking interaction be-
tween the A and its neighboring Tsenergye=−2d. Therefore,
there are four possible energy valuese=−3,−2,−1,0. The
minimum energye=−3 corresponds to a closed hairpin with
A and T stacked. If the hairpin is open but A and T are

FIG. 6. sColor onlined Sampling of the configuration space.
Sampling of the configuration space at infinite temperature for poly-
mers comprisingsad six and sbd eight monomers. Different color
lines represent different values of the probabilityp. At high tem-
perature, one expects all configurations to be sampled with equal
ratesswhose value is shown by the blue lined. The average rate is
the number of time steps in the simulation divided by the total
number of configurations for the polymer. The number of configu-
rations for a polymer with sixseightd monomers that sits on a three-
dimensional lattice and satisfies the stiffness constraints indicated in
Fig. 2 is 7500s186 792d. For each polymer size, we collected sta-
tistics for 5 000 0000 time steps. Our results demonstrate that the
polymer samples conformation space more uniformly for smaller
values ofp. scd SkewnessSspd of the distribution of sampling rates
of the conformation space of the polymer for different values ofp.
The skewness measures the asymmetry of the distribution. For per-
fect sampling, we expect the distribution to be normal, that is,S
=0. For p=0, we findS=0.35 sL=6d and S=0.59 sL=8d, in good
agreement with this expectation.sdd KurtosisKspd of the distribu-
tion of sampling rates of the conformation space of the polymer.
The kurtosis measures the decay rate of the tails of the distribution.
For a normal distribution, one hasK=3. For p=0, we findK=2.6
for L=6 andK=3.3 for L=8, in good agreement with this expecta-
tion. Note that bothSandK take smaller values forp,0.01 for the
longer polymer. This suggests that as the length of the polymer
increases, the differences in the distributions for smallp with re-
spect top=0 become smaller.

FIG. 7. sColor onlined sad Average radius of gyrationkRgl,Ln

versus polymer lengthL. The solid line indicates the best fit to the
expected power-law behaviorkRgl,Ln, obtaining n=0.75±0.07.
sbd Mean-squared displacement X2std versus time for different poly-
mer lengthsL=48–197. Note that X2 grows linearly with time as
expected in a diffusive processf78g. scd By scaling the data insbd
by D,La with a=0.80±0.13, we are able to collapse all the data
onto a single curve. The data displayed in the plots are averages
over 5000 runs 100 000–150 000 time steps long usingp=0.05.
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stacked, the energy ise=−2. If the hairpin is closed but there
is no AT stacking, the energy ise=−1. In all other cases, the
energy is 0.

By enumerating the possible pin conformations for each
of the the 7500 different lattice configurations for a polymer
with L=6, we are able to compute the degeneracy of each
energy level: 0, −1, −2, and −3. Hence, we can calculate the
expected occupation numbers—i.e., average population—of
each energy level as a function of temperaturefFig. 8sbdg. At
high temperatures, one expects the energy to be dominated
by the configurations with zero energy, because of their large
number, while at lower temperatures, one expects that the
dominant contribution comes from those configurations with
lower energies. As Fig. 8 demonstrates, we find excellent
agreement between the simulations and the theoretical pre-
dictions f90g.

E. Melting temperatures

In order to show that our model correctly describes hair-
pin properties, we test whether equilibrium properties such
as melting temperatures and closing times are in agreement
with experimental observations. First, we demonstrate that
our model is able to reach equilibrium and that we do ob-
serve a transition from a high-temperature region dominated
by open configurations to a low-temperature region domi-
nated by closed configurationssFig. 9d. We measure the av-
erage fraction of broken bondsusTd as a function of tempera-
ture and find a typical melting curve that goes from 1 at high

temperatures, where hairpins are mostly open, to zero at low
temperatures, where open configurations dominate the parti-
tion function. The temperature at whichusTmd=0.5 defines
the melting temperature, which is also the temperature at
which the melting curve has an inflection point and the spe-
cific heat has a maximumf91g.

Next, we investigate if the values for the nucleotide inter-
action energies that we derived from experimental data in
Ref. f82g lead to “self-consistent” predictions of melting
temperatures of hairpins with different sequences. We per-
form simulations for more than 60 hairpins with randomly
sampled stem sequences with stems comprising four, five,
and six base pairs and loops comprising four T’s. We show in
Fig. 10sad the factor necessary to convert the melting tem-
peratures in our simulationsTm

Sim into the melting tempera-
tures obtained using theTm server of Zukerf1,81g. It is vi-
sually apparent that we obtain an approximately constant
conversion factor for all those hairpin sequences.

In order to better evaluate the fluctuations of the conver-
sion factor, we show in Fig. 10sbd the relative fluctuations of
the sequence-specific conversion factor to the average con-
version factor. Note that most cases are within 30% of the
average, and that the standard deviation is only 15%. More-
over, as shown in Fig. 10scd, these fluctuations are well de-

FIG. 8. sColor onlined sad Equilibrium energy of a hairpin with
sequence A-TTTT-T. This hairpin has an internal loop comprising
four T’s and a stem with a single base pair A-T. Differently from
Fig. 3, we consider that the stacking energy of the T’s is zero. Under
these conditions, a hairpin configuration can only take four energy
values,e=−3, when the hairpin is closedsA-T hydrogen bond is
formedd and A is stacked with its neighboring T;e=−2, when the A
is stacked with its neighboring T and the hairpin is open;e=−1,
when the hairpin is closed but there is no stacking between the A
and its neighboring T;e=0, for all other cases. Under these condi-
tions, the exact number of configurations for each energy level,gi,
can be computed.sbd Occupation numberknisTdl of each energy
level, i =0 to −3, as a function of temperature. Colored dots indicate
the numerical results obtained from averages over 5 000 000 Monte
Carlo stepssMCSd using the parallel tempering MC methodf80g.
Purple solid lines correspond to the theoretical expressions for the
energye=oieigie

−ei/T/Z in sad, and the occupation numberknisTdl
=gie

−ei/T/Z in sbd, where Z=oigie
−ei/T is the partition function.

Note the excellent agreement between theoretical predictions and
simulation results.

FIG. 9. sColor onlined Test of the equilibrium properties of a
hairpin with sequence GGATAA-T4-TTATCC. We performed simu-
lations using the parallel tempering methodf80g for the casesp
=0.01, 0.05, and 0.1. Results correspond to averages over
10 000 000 MCS. Simulation temperatures in the rangef0,1g were
mapped into absolute temperatures using the conversion factor
Tm

Sim/Tm
MFOLD=1.71310−3 obtained in Fig. 10 for the ionic condi-

tions fNa+g=1 M andfMg++g=0 M. sad Specific heat as a function
of temperature calculated assid the derivative of the energy with
respect to temperaturedE/dT ssolid linesd, and sii d c=skE2l
−kEl2d /T2 ssymbolsd f77g. At equilibrium, fluctuation-dissipation
relations must be fulfilled and the two methods must lead to equal
estimates. This is indeed what we observe. Furthermore, note that
the agreement between the two methods is excellent even in the
melting region when the heat capacity has its peak. We also checked
that at low temperature the hairpin reaches its minimum energy
configuration. Thus, this test demonstrates that we reach equilib-
rium in our simulations and that the equilibrium properties that we
measure are correct.sbd Melting curve for the values ofp consid-
ered insad. Note that the curves are insensitive to the specific value
of p in the range considered. As expected, the fraction of broken
bonds in the stem goes from zero at low temperaturesswhere the
low energy of the closed/native state dominates the partition func-
tiond to 1 at high temperaturesswhere entropy dominatesd. Blue
dashed lines indicate the melting temperature in both plots: At the
specific heat peak and at the point whereu=0.5. We obtain for the
two casesTm=341±3 K.
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scribed by a Gaussian distribution with zero mean and stan-
dard deviation 0.15, indicating that there is no apparent bias
in our estimation of melting temperaturesf92g.

We checked that the fluctuations of the ratios between the
experimental melting temperatures for hairpins with short
stems reported inf60g and the values predicted by the server
are ten times smaller than the fluctuations observed with the
ratios between the simulation results and the server predic-
tions.

F. Relaxation rates

To validate the dynamics of our model, we compare the
kinetic measurements obtained from simulations at a fixed
temperature with experimental results. Specifically, we mea-
sure the relaxation rateskr for a hairpin of sequence
GGATAA-T4-TTATC which was studied experimentally in
f16g. The relaxation rate is defined as

kr = 1/tclosing+ 1/topening, s3d

wheretclosing and topening stand for the closing and opening
times, respectively. In Fig. 11sad, we show that simulation
results forkr sblack dotsd are in agreement with experimental
measurementssred dotsd and show a decrease in rate with
1/T. Note that in order to convert simulation rates to experi-
mental rates, one needs to use a factor of the order of
10−9 s/MCS. This value suggests a correspondence between
one Monte Carlo step and one nanosecond, which is the time
scale at which nucleosides move and get thermalizedf65g.
Recall that in our algorithm nucleosides are thermalized
within one MCS, which is thus consistent with the experi-
mental time scales.

The simplest description for the folding/unfolding transi-
tions of a hairpin is a two-state systemsopen and closedd
with a transition state at a constant energy barrierEa. Two-
state models are commonly used to describe the kinetics of
the unfolding of single-domain proteins and hairpins
f16,20,83–85g. Within this description, which we suppose to
be valid close toTm, the relaxation constants are assumed to
have an Arrhenius dependence on the barrier. In this sce-
nario, the relaxation constant is described by

kr = Ae−Ea/Ts1 + Keq
−1d, s4d

whereKeqsTd=1/usTd−1 is the equilibrium constant,T is the
absolute temperatureswe have setkB=1 for convenienced,
and A is a phenomenological constant rate. Figure 11sbd
shows thatkr / f1+Keq

−1sTdg is well fit by an exponential with a
negative activation energyEa<−3.5 kcal/mol consistent
with the analysis of the experimental data for the same hair-
pin by Ansari et al. f16g. Negative activation energies are
believed to be a hallmark of zipping processes in which the
transition state has a lower energy than the coil configura-
tion. In such processes, the rate-limiting step is the formation
of a nucleus with a small number of hydrogen bonds—
between residues in polypeptides or bases in nucleic acids—
that immediately leads to the complete folding of the mol-
ecule f60g. This is not unlike the situation found in
oligonucleotide dimersf86g, proteinb-sheet hairpinsf83,87g,
and proteina-helicesf88,93g.

V. CONCLUSION

Understanding the configurational dynamics of nucleic
acids is relevant to many open questions such as the folding

FIG. 10. sColor onlined Interaction Testing: Comparison of results from simulations with theoretical values.sad Ratio of the melting
temperature estimates,r ;Tm

Sim/Tm
MFOLD, obtained with our model and with Zuker’s DNA folding serverf1,81g for different hairpins with

stems of four, five, and six bases long. For all hairpins, the loop comprises four T’s. Melting temperatures from the folding server correspond
to the following ionic concentrations:fNa+g=1 M and fMg++g=0 M. Note that in the interaction tables of Fig. 3, we do not consider any
difference between oligonucleotides starting at the 58 or the 38 end. The reason for this modeling choice is that the fluctuations observed in
the melting temperature obtained in each case, 58 to 38 fTms58dg and 38 to 58 fTms38dg sequences, were considerably smaller than the
fluctuations of the whole data set. Therefore, the melting temperature used in the data shown corresponds to the average of bothTm’s. The
red solid lines correspond to the average factors for hairpins with stems comprising four, five, and six base pairs. Note that the fluctuations
are quite small.sbd Relative fluctuationse=sr − r̄d / r of the ratio of temperatures with respect to the meansr̄ =1.71310−3d. The red line
represents the meanē=−0.025 and the gray band represents the region within one standard deviation of the mean.scd Normalized distri-
bution of e. The red line corresponds to a Gaussian fit of zero mean and standard deviations=0.15. We obtained the melting temperatures
from parallel tempering Monte Carlo simulations for temperatures in the range 0.06 to 1, and performing averages over 33106, 53106, and
103106 MCS for hairpins with stems comprising four, five, and six base pairs, respectively. All data correspond to the case
p=0.05, but we found no significant changes for different values ofp. The analysis of different ionic conditions yields similar fluctuations
but different conversion factors, suggesting that salt concentration and temperature play a similar role in our model.
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of RNA or the hybridization of two separate DNA strands in
microarrays. A particularly challenging problem is to under-
stand how base heterogeneity affects mechanical and kinetic
properties of nucleic acids at mesoscales.

In order to provide a new window into these questions, in
this paper we have described a novel mesoscopic model for
nucleic acid chains. The main feature of the model is that it
considers single-strand properties individually, making it

suitable for the study of double-stranded as well as single-
stranded nucleic acids. We have demonstrated that the dy-
namical rules implemented are physically sound, and that
they are realistic. Specifically, we performed a number of
comparisons of static and dynamic properties obtained in our
simulations with those for ssDNA hairpins and found good
agreement. All these results validate our model, making it a
suitable tool for the investigation of processes in which
single-strand properties are relevant, such as the formation of
complex structures such as H-pseudoknots which cannot be
predicted by current models.
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APPENDIX A: COMPARISON OF DIFFERENT MONTE
CARLO SCHEMES

To ensure the validity of the dynamic algorithm described
in Sec. III C, a further test is to compare the Monte Carlo
scheme that we use to alternative schemes that also consider
separately bead and pin motion. A possible alternative is one
that we denote scheme BsTable IId. This alternative scheme
should, in principle, sample configurations with the same
equilibrium distribution as the scheme described in Table I.
Indeed, Fig. 12 shows that for a hairpin of sequence
GGATAA-T4-TTATCC, parallel tempering simulationsf80g
yield identical melting and energy curves for the two
schemes. However, Fig. 12sbd shows that the two schemes
are not equivalent when performing simulations at a fixed
temperature. In particular, scheme B samples configurations
with energies significantly lower than the value obtained
with parallel tempering simulations. This observation sug-
gests that scheme B tends to sample the minimum energy

FIG. 11. sColor onlined Kinetic properties.sad Relaxation rates
kr for the hairpin GGATAA-T4-TTATCC versus inverse tempera-
ture. Black circles correspond to the data obtained from the simu-
lations while red squares correspond to experimental data obtained
by Ansariet al.with the same hairpin for two different experimental
setupsf16,18g. The dashed line corresponds to the fit to a two-state
model with Arrhenius dependence of the relaxation rates; cf.sbd.
Our data were obtained by averaging over different dynamical his-
tories s,200d for temperatures in the rangeTm±0.07Tm. We run
simulations with a wide range of MCSs1 500 000 to 1 800 000d to
make sure that our estimates of the relaxation rates converged.
Simulation temperatures have been rescaled by a factor 1.82
310−3 to convert the temperature into Kelvin. Note that we use a
different factor from that obtained in Fig. 10 to adjust to the experi-
mantal conditions used in Ref.f16g. In order to convert simulation
rates to experimental rates, one needs to use a factor of approxi-
mately 10−9. This value suggests that the time scale of a single MC
step is approximately one nanosecond.sbd Two-state analysis.
kr / f1+Keq

−1sTdg sblack dotsd versus inverse temperature.Keq is
known from equilibrium measurementssFig. 9d asKeqsTd=1/usTd
−1. The solid red line corrsponds to the fit to the expression in Eq.
s4d. The two fitting parameters areEa, the activation energy, andA,
a phenomenological constant rate. The parameters for the best fit
areEa=−3.5±0.4 kcal/mol andA=30±2 s−1.

TABLE II. Alternative Monte Carlo scheme for the dynamics of
a single-stranded nucleic acid.

1 Generate a new lattice configuration for the
polymer keeping the pin orientations fixed. That
is, go through steps 1 to 5 in the algorithm
described in Table I.

2 Thermalize the nucleotides in this new lattice
configuration. That is, change the orientation of
the pins following step 7 in the algorithm
described in Table I.

3 Compute the energy of this new global
configuration.

4 Accept or reject this new global configuration
according to theMETROPOLISalgorithm.
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conformations of each different lattice configuration, and as
a result gets easily “trapped” in local minima. It follows that
this alternative scheme is not as good a tool to investigate the
DNA dynamicsf94g.

APPENDIX B: OPTIMIZATION OF THE INTERACTION
PARAMETERS

To provide better agreement between the simulation melt-
ing temperatures and the melting temperatures predicted by
Zuker’s serverf1g, we need to optimize the interaction
strengths presented in Fig. 3 and used in our simulations. To
this end, we must define a cost function and select the set of
parameters that minimizes it. In our case, an obvious choice
for the cost function is the standard deviation of the relative
fluctuations of the ratios between simulation and theoretical
melting temperaturessFig. 10d. This is, however, a time-
consuming task that we have not concluded yet.

To improve the parameter choices, we analyze the melting
temperatures for hairpins with stems comprising four base
pairs. We find out that hairpins whose stems are rich in GC
pairs are more stable than they should be, whereas hairpins

with stems rich in AT pairs are less stable than they should
be. This suggests that one may reduce the fluctuations of the
temperature ratios by introducing, for instance, the following
modifications: sid reducing the GC bond strength,sii d in-
creasing the AT bond strength, andsiii d reducing the GC
stacking strength. Figure 13 shows the variation of the tem-
perature ratiosr =Tm

Sim/Tm
MFOLD with respect to the nominal

casesFig. 10d—black dots—for the following cases:sid—
blue triangles,sii d—left yellow triangles,siii d—green dia-
monds, and changing the three parameters simultaneously—
red squares. Note that these changes of parameters result in a
decrease of the fluctuations, the best choice being the simul-
taneous change of the strength of AT bonds, GC bonds, and
GC stacking interactions. To obtain the best set of param-
eters, one needs to obtain the overall minimum for the vari-
ance among all the possible sets of parameters.
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FIG. 12. sColor onlined Comparison of two different Monte
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FIG. 13. Interaction optimization. Comparison of results from
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